Call for Abstract

13th International conference on Proteomics, Genomics and Bioinformatics, will be organized around the theme “Leading Edge Innovations in Life Sciences”

Proteomics 2019 is comprised of keynote and speakers sessions on latest cutting edge research designed to offer comprehensive global discussions that address current issues in Proteomics 2019

Submit your abstract to any of the mentioned tracks.

Register now for the conference by choosing an appropriate package suitable to you.

Biomedical research is in general simply known as medical research. It is the basic research, applied research, or translational research conducted to aid and supports the development of knowledge in the field of medicine. An important kind of medical research is clinical research, which is distinguished by the involvement of patients. Other kinds of medical research include pre-clinical research, for example on animals, and basic medical research, for example in genetics.

Protein structure is the three-dimensional arrangement of atoms in a protein molecule. Proteins are polymers specifically polypeptides formed from sequences of amino acids, the monomers of the polymer. A single amino acid monomer may also be called a residue indicating a repeating unit of a polymer. Proteins form by amino acids undergoing condensation reactions, in which the amino acids lose one water molecule per reaction in order to attach to one another with a peptide bond. By convention, a chain of 30 amino acids is often identified as a peptide, rather than a protein. To be able to perform their biological function, proteins fold into one or more specific spatial conformations driven by a number of non-covalent interactions such as hydrogen bonding, ionic interactions, Van der Waals forces, and hydrophobic packing. To understand the functions of proteins at a molecular level, it is often necessary to determine their three-dimensional structure. This is the topic of the scientific field of structural biology, which employs techniques such as X-ray crystallography, NMR spectroscopy, and dual polarisation interferometry to determine the structure of proteins.

Bioinformatics is an interdisciplinary field that develops methods and software tools for understanding biological data. As an interdisciplinary field of science, bioinformatics combines computer science, statistics, mathematics, and engineering to analyse and interpret biological data.

Computational Biology involves the improvement and application of statistics-analytical and theoretical methods, mathematical modelling and computational simulation techniques to the study of organic, behavioural, and social structures. The field is widely described and includes foundations in biology, applied mathematics, data, biochemistry, chemistry, biophysics, molecular biology, genetics, genomics, pc technological know-how and evolution.


Genomics refers to the study of the genome in contrast genetics which refers to the study of genes and their roles in inheritance. Genomics can be considered a discipline in genetics. It applies recombinant DNA, DNA sequencing methods, and bioinformatics to sequence, assemble and analyse the function and structure of genomes (the complete set of DNA within a single cell of an organism). Advances in genomics have triggered a revolution in discovery-based research to understand even the most complex biological systems such as the brain. The field includes efforts to determine the entire of DNA sequence organisms and fine-scale genetic mapping.

Cardiovascular disease (CVD) is a class of diseases that involve the heart or blood vessels. Cardiovascular disease includes coronary artery diseases (CAD) such as angina and myocardial infarction (commonly known as a heart attack). Other CVDs are the stroke, heart failure, hypertensive heart disease, rheumatic heart disease, cardiomyopathy, heart arrhythmia, congenital heart disease, valvular heart disease, carditis, aortic aneurysms, peripheral artery disease, and venous thrombosis.

Electrospray ionization (ESI) is a technique used in mass spectrometry to produce ions using an electrospray in which a high voltage is applied to a liquid to create an aerosol. Liquid chromatography is an analytical chemistry technique that combines the physical separation capabilities of liquid chromatography (or HPLC) with the mass analysis capabilities of mass spectrometry (MS). Multidimensional Protein Identification Technology (MudPIT) is used to analyze the proteomes of organisms. Protein purification is a series of processes intended to isolate one or a few proteins from a complex mixture, usually cells, tissues or whole organisms. Imaging mass spectrometry (IMS) using matrix-assisted laser desorption ionization (MALDI) is a new and effective tool for molecular studies of complex biological samples such as tissue sections.


Epigenomics is the study of the complete set of epigenetic modifications on the genetic material of a cell, known as the epigenome. The field is analogous to genomics and proteomics, which are the study of the genome and proteome of a cell.  Epigenetic modifications are reversible modifications on a cell’s DNA or histones that affect gene expression without altering the DNA sequence. Epigenomic maintenance is a continuous process and plays an important role in the stability of eukaryotic genomes by taking part in crucial biological mechanisms like DNA repair.  Plant flavones are said to be inhibiting epigenomic marks that cause cancers. Two of the most characterized epigenetic modifications are DNA methylation and histone modification. Epigenetic modifications play an important role in gene expression and regulation and are involved in numerous cellular processes such as in differentiation/development and tumorigenesis.  The study of epigenetics on a global level has been made possible only recently through the adaptation of genomic high-throughput assays.

Epigenetics are stable heritable traits (or "phenotypes") that cannot be explained by changes in DNA sequence. Epigenetics often refers to changes in a chromosome that affect gene activity and expression but can also be used to describe any heritable phenotypic change that doesn't derive from a modification of the genome, such as prions. Such effects on cellular and physiological phenotypic traits may result from external or environmental factors, or be part of the normal developmental program. The standard definition of epigenetic requires these alterations to be heritable, either in the progeny of cells or of organisms.

Proteins are a primary constituent of living things and one of the chief classes of molecules studied in biochemistry. Proteins provide most of the molecular machinery of cells. Many are enzymes or subunits of enzymes. Other proteins play structural or mechanical roles, such as those that form the struts and joints of the cytoskeleton. Each protein is linear polymers built of amino acids.

Systems biology is the computational and mathematical modelling of complex biological systems. An emerging engineering approach applied to biological scientific research, systems biology is a biology-based interdisciplinary field of study that focuses on complex interactions within biological systems, using a holistic approach (holism instead of the more traditional reductionism) to biological research. Particularly from the year 2000 onwards, the concept has been used widely in the biosciences in a variety of contexts. The Human Genome Project is an example of applied systems thinking in biology which has led to new, collaborative ways of working on problems in the biological field of genetics. One of the outreaching aims of systems biology is to model and discover emergent properties, properties of cells, tissues and organisms functioning as a system whose theoretical description is only possible using techniques which fall under the remit of systems biology. These typically involve metabolic networks or cell signalling networks.

Computational biology involves the development and application of data-analytical and theoretical methods, mathematical modelling and computational simulation techniques to the study of biological, behavioural, and social systems. The field is broadly defined and includes foundations in computer science, applied mathematics, animation, statistics, biochemistry, chemistry, biophysics, molecular biology, genetics, homology, genomics, ecology, evolution, anatomy, neuroscience, and visualization.

The high demand for low-cost sequencing has driven the development of high-throughput sequencing, which also goes by the term next-generation sequencing (NGS). Thousands or millions of sequences are concurrently produced in a single next-generation sequencing process. Next-generation sequencing has become a commodity. With the commercialization of various affordable desktop sequencers, NGS has become within the reach of traditional wet-lab biologists. As seen in recent years, the genome-wide scale computational analysis is increasingly being used as a backbone to foster novel discovery in biomedical research.


Pharmacogenomics is the study of the role of the genome in drug response. Its name (pharmaco + genomics) reflects it’s combining of pharmacology and genomics. Pharmacogenomics analyzes how the genetic makeup of an individual affects his/her response to drugs. It deals with the influence of acquired and inherited genetic variation on drug response in patients by correlating gene expression or single-nucleotide polymorphisms with pharmacokinetics (drug absorption, distribution, metabolism, and elimination) and pharmacodynamics (effects mediated through a drug's biological targets). The term pharmacogenomics is often used interchangeably with pharmacogenetics. Although both terms relate to drug response based on genetic influences, pharmacogenetics focuses on single drug-gene interactions, while pharmacogenomics encompasses a more genome-wide association approach, incorporating genomics and epigenetics while dealing with the effects of multiple genes on drug response.

Current transcriptomic profiling techniques include DNA microarray, cDNA amplified fragment length polymorphism (cDNA-AFLP), expressed sequence tag (EST) sequencing, serial analysis of gene expression (SAGE), massive parallel signature sequencing (MPSS), RNA-seq etc. The most recent technology for transcriptomic profiling is RNA-Seq which is considered as a revolutionary tool for this purpose. Eukaryotic transcriptomic profiles are primarily analyzed with this technique and it has been already applied for transcriptomic analysis of several organisms including Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, mouse and a human cell.

Machine learning is closely related to computational statistics, which also focuses on prediction-making through the use of computers. It has strong ties to mathematical optimization, which delivers methods, theory and application domains to the field. Machine learning is sometimes conflated with data mining, where the latter subfield focuses more on exploratory data analysis and is known as unsupervised learning.


Protein sequencing is the practical process of determining the amino acid sequence of all or part of a protein or peptide. This may serve to identify the protein or characterize its post-translational modifications. Typically, partial sequencing of a protein provides sufficient information (one or more sequence tags) to identify it with reference to databases of protein sequences derived from the conceptual translation of genes.

Molecular Interactions are attractive or repulsive forces between molecules and between non-bonded atoms. Molecular interactions are important in diverse fields of protein folding, drug design, material science, sensors, nanotechnology, separations, and origin of life. Molecular interactions are also known as non-covalent interactions or intermolecular interactions. Molecular interactions are not bonds.

The proteome of each living cell is dynamic, altering in response to the individual cell's metabolic state and reception of intracellular and extracellular signal molecules, and many of the proteins which are expressed will be post-translationally altered. Thus if the purpose of the proteome analysis is to aid the understanding of protein function and interaction, then it is the identification of the proteins in their final state which is required: for this mass spectrometric identification of individual proteins, indicating site and nature of modifications, is essential.